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COMMENT 

Permutation operators in Hilbert space gained via IWOP 

technique 

Fan Hong-yi 
Department of Modern Physics, China University of Science and Technology, Hefei, Anhui, 
People’s Republic of China, and Department of Physics, University of New Brunswick, 
PO Box 4400, Fredericton, NB, Canada E3B 5A3 

Received 26 September 1988 

Abstract. A kind of permutation operators in Hilbert space are derived in terms of the 
technique of integration within ordered product (IWOP).  These operators are shown to be 
quantum maps imaged by certain permutation transformations in classical space. Some 
operator identities about the relationship between permutation operators and transposition 
operators are also derived. 

1. Introduction 

As is well known, permutation transformation is an important topic both in group 
theory [ l ]  and in quantum mechanics when exchange symmetry is considered [2]. 
However, the problem of what are n-body permutation operators in Hilbert space has 
not received enough attention in the literature. The purpose of this comment is to 
study these operators by directly using the newly developed IWOP (integration within 
ordered product) technique. This technique was introduced into quantum mechanics 
in [3] and has provided us with a new approach to studying a variety of problems in 
quantum optics [4-61 and in the quantum-classical transition regime [7-91. In this 
work, we want to obtain: (i) some new expressions of permutation operators which 
are quantum maps imaged by certain permutation transformations in classical space 
and (ii) some new operator identities regarding the relationship of permutation 
operators. In § 2, we deal with the transposition operator since any permutation is 
equivalent to a finite number of transpositions. In § 3 we derive three-body permutation 
operators; the method we use in this section can be easily generalised to derive n-body 
permutation operators, as discussed in $4 .  

2. Transposition operator gained via IWOP technique 

Consider a transposition operator p21 whose action on the two-mode coordinate 
eigenstate 1q1q2) obeys 

Pr114142)= lq291) (2.1) 

( 2 . 2 )  

where lqlq2) is the tensor product of l q l )  and (qJ,  e.g. 

1q1q2) = v - ” ~  e x p [ - ~ ( q : + q : ) + J Z ( q , a : + q , a S )  -4(a:*ta:’)]l00) 
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and 

lq2ql)= T-'" exp[-;(q:+q:)+JZ(q,ai+q,a:) - ~ ( U ~ ~ + U : ~ ) ] ~ O O ) .  (2.3) 
Here a: (k = 1,2) are Bose creation operators, satisfying [ak,  a:,] = &', 100) is the 
ground state of the two-mode harmonic oscillator, the projection operator lOO)(OOl is 

(2.4) JOO)(OO~ = :exp(-ala, t -aSa2): 

where : . . . : denotes the normal product. Using the completeness relation of lqlq2) 
m 

-m 

we can easily obtain the coordinate representation of p 2 ,  
m 

Pa = J- J- dq, dq2 lq2q, ) (q ,q21.  
-X 

Using (2.3), (2.4) and the IWOP technique, we perform the integration of (2.6) and get 
m 

P 2 ' = ' I I  7T dq, dq2 :exP[-q:-q~+JZ(qzaT+41a:+qla,+q2~2) 
--CO 

-L( 2 a ,  *+ a1)2- ; (a :+a2) ' ] :  

= :exp(a:a, + a:a2 -ala,  - a:az):. (2.7) 
Further, by virtue of the operator identity 

: exp[ A (a :  - a;) (  a, - a2) ]  : = exp[ -; In( 1 - 2 A  )(a: - a:)  (a ,  - az) ]  (2.8) 
p 2 ,  can be put into 

pzl = exp[-;i.rr(a:- a:) (a ,  - a 2 ) ]  

p 2 ,  = exp(ti.rrJy) exp(im:a,) exp(-;ivJy) 

(2.9) 

(2.10) 

or 

where Jy is introduced by Jy = ( l / 2 i ) ( u ~ u 2 - u ~ u l ) .  Since exp[im:a,l= ( - l ) N 1 ,  N1 = 
ais,, it is easy to prove that pZ1 is its own inverse, e.g. 

p : ,  = exp(ti7T~y)(-1)NI(-l)Ni exp(-:irJy) = 1. 

From (2.6), one can easily see that p 2 ,  is Hermitian 
m 

pi1 = dq, dq2 l q l q 2 ) ( q 2 q l l  ' ~ 2 1 .  (2.11) 
-m 

i Moreover, according to (2.9), p 2 ,  is also unitary p21 = p ; i ,  As a consequence of (2.10), 
we get 

p21a;pz,= a: P21a:P21= a: (2.12) 
which confirms that pZ1 is the transposition operator in Hilbert space, and the coordinate 
representation (2.6) of p 2 ,  shows that p 2 ,  is the quantum map imaged by interchanging 
q1 e- q2 in classical space. 
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3. Three-body permutation operators 

Consider, therefore, the three-mode coordinate eigenstate 

+a( qla: + q2a: + q 3 a 9  -;(a: + ai2 + a i 2 ) ]  1000) 

~OOO)(OOO~ = :exp[-a:al - a 2 a 2 -  a i a ~ : .  

(3.1) 

where l000) is the three-mode vacuum state, satisfying 

(3.2) .t 

In this case, there exist six permutation transformations, denoted by ( r s t ) ,  

t is an arbitrary permutation of the numbers 1,2,  3. The action of ( r s t )  on 

exp[-%d+ 4:+ 4 3  + f i ( 4 d +  w:+ 414) = .ir-3/4 

-+(a: + U l 2  + a i 2 ) ]  l000). 

The six permutation transformations can have the following representation 

(3.3) 

(231)=(: 0 1 0  : A) 
(312)=(: 8 i) (213)=(; 0 1 0  :) 

(132)=(: 1 0 0  A) (321)=(: 0 0 1  A :) (123)=(: :)=I. 

1 0 0  (3.4) 

It is easy to prove that these matrices constitute a group. The multiplication table of 
the group can be easily obtained by the matrix product?, for example, 

(132)(213) = (231) (231)(312) = U. (3.5) 

i It must be pointed out that the multiplication table derived from (3.4) is different from that in [ l ]  where 
a permutation is characterised by an array 

which indicates the operation of putting the objects in slot i into slot ni, and the multiplication rule can be 
shown through the following example: 

In deducing this result the columns of TI3* were arranged so that the top row of was identical with 
the bottom row of T,,,. This manipulation does not match with the matrix product of (3.5). In [2], the 
product rule of permutation operators is defined in a similar manner to [l]. 
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Now consider the operator 

whose Hermite conjugate operator is 
m 

-m 

Using (3.2) and (3.3), and the IWOP technique, we can carry out the integration in 
(3.6) and get 

a: 

~ 2 3 1 =  7 ~ - ~ ' ~  I[[ dq, dq2 dq3 :exp[-(q:+ q:+q:) 
--Dc 

+ ~ ( q 2 ~ : + q 3 Q : + ~ 1 ~ : + q l a , + q , a 2 + q 3 a 3 )  
- ; ( U l  + -$ (a2+  u92-4(u3+ a y ] :  

Comparing (3.6) with (3.8), we see that ~ 2 3 1  is the quantum map imaged by the 
permutation transformation (231) in ql , q 2 ,  q3 space. A trivial generalisation of (3.8) 
is 

Since /det(rst)/ = 1, it is easy to see that 



Permutation operators in Hilbert space 1197 

which implies that p;,, = p;;, e.g. every permutation operator is unitary. Further, in 
terms of (3.6) we can show that ~ 2 3 1  can be decomposed as the product of transposition 
operators, e.g. 

- - P132P213 * 

Similarly, we have 

P312 = P213P132 * 

By introducing the three-mode coherent state 

(3.10) 

(3 .11)  

Iz1z2z3) = exp[--4(lzlj2+ /z2I2+ 1z3I2) + z,a:+ z2a:+ z3a:] 1000) (3.12) 

and using the property 

:f(ai, a;): I Z I Z ~ Z J  =f(zi, ~ : ) IZIZ~Z~)  

we can immediately obtain the effect of (3.8) acting on 1z1z2z3) 

(3.13) 

P2311z1z2z3) = 1Z223z1). (3.14) 

In order to further analyse pISt, we appeal to the following operator identity [lo] (see 
also the appendix of this present paper): 

(3.15) 

With the help of (3.15), we can reform, for example, ~ 3 1 2  into the following form, 
which seems to be new: 

(3.16) 

where the logarithm can be easily evaluated because the matrix in (3.16) can be 
diagonised. The result is 

2 Tri 
Tr YE-* 1 + 8 i  p=-- 1 - 8 i  

3 8  3 4  3 
(YE- Tr 

(3.17) 
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Since CY* = -p ,  y* = - y, e-' = (231), one can easily confirm that p i l 2  = p;:2 = p Z 3 , .  As 
a result of (2.9), (3.11) and (3.16), the breakdown of p312 into the product of p2,3 and 
pi32 can be rewritten as a new operator identity 

(3.18) 

Further, by virtue of (A2) in the appendix, we obtain the permutation properties in 
Hilbert space 

(3.19) 

The above discussions can be generalised to derive n-body permutation operators in 
Hilbert space. 

t - 1 -  i 
p31Zub;l12 = P312':P;~2 P31ZU3P312- 

4. N-body permutation operators 

Let (uv, . , w) denote an n-body permutation matrix 

where U, U,. . . , w is an arbitrary permutation of the numbers 1,2, .  . . , n. There exist 
n ! permutation matrices which constitute, in the sense of matrix product, a group. 
After introducing the n-mode coordinate eigenstate 

-f( u:2+u:2+...+u~2)]~oo...0) 

we can construct the permutation operator p,,, ..., by 

(4.2) 
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a3 

P U ”  ... w PU,”, ... w ‘  - dq, dq,. . . dq, - L 

Again using the IWOP technique, we can put P,,,...~ into the normal product form 

~ ~ ~ . . . ~ = : e x p  ( a , u 2 . .  . a t , ) [ ( u u . .  . w ) - n ]  [;:I] : 1 t t  an 

(4.4) 

where 1 is the n x n unit matrix. As a consequence of (A4), equation (4.4) becomes 

( uu . . . w ) (  U’U’ 

Further, consider the product puv...w and pu.o,..,w,; using (4.3) we have 

. .  

which yields 

U : )  In( u’u’ . . . w ’ )  

(4.7) 

In summary, by means of the IWOP technique, we have found a new direct approach 
to obtaining both the normally ordered and explicit permutation operator in Hilbert 
space. 

Appendix 

Let A be a 3 x 3 matrix. From the operator identity 

e A B e - A = B + [ A , B ] + ~ [ A , [ A , B l l + ~ [ A , [ A , [ A , B l l l +  1 1 ... (Al)  

and the commutation relation [ai ,  U; ]  = a,, we can obtain 
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Using the overcompleteness relation of the coherent state 

and (A2), we have 

which can be generalised to the case of A being an n x n matrix. 
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